为正确使用软件,请仔细阅读软件使用手册

如有更改,以我公司网站公布内容为准,恕不另行通知

软件使用手册 -1-

-	21
-	~

第一章 概述	3
1.1 简要介绍	3
1.2 特色功能	4
1.3 适用范围	
1.4 帮助与服务	7
第二章 安装卸载	8
2.1 系统需求 ······	8
2.2 软件安装 ······	8
2.3 安装答疑	10
2.4 软件卸载	11
第三章 快速入门	
31 仲读设计新由机	
3 2 中读进行由机改型设计	
3.3 快速设计单绕组双速电机	
3 4 核筧变 新 特性 ······	
3 5 快速核算由机性能 ····································	
笋 加音 功能详解	
4. Ⅰ 工介面 ▲ 2 立仕范苗 ······	
	
Ⅰ.2.1 床行伸加力 <u>奶</u> 酒 Λ 2 2 输出机械 CAD 圆纸 立件	
4.2.3 初亚小区床行为图开 4.3 邦助范单 ····································	
4.6 前切来中 4.4 貓完對握 ······	
4.5 你是实话 4.5 你转子冲片	
4.5.1 输入数据注意事项······	
4.5.2 外转子冲片设计	
4.5.3 外转子冲片计算信息	
4.6 内定子冲片	
4.6.1 输入数据注意事项······	
4.3.0 内定子冲片设计	
4.6.3 内定子冲片计算信息······	
4.7 转子端环	
4.7.1 输入数据注意事项	
4.7.2 设计转子端环	27
4.7.3 转子端环计算信息	27

软件使用手册 - 2 -

		. 20
	4.8 铁心结构与材料	·28
	4.9 统组 反直 与 参 叙 ·································	·29
	4.10 反订 回寻 4.10 反订 回寻	· 30
	4.11 日幼 反 11 与 化 化 11 异	· 30
	4.11.1余什反直	· 30
	4.11.2 切能选择	·31
	4.11.3 仅计结未处理	•31
	4.12 绕组敛据临昇和调整	•32
	4.13 系统设直	.33
	4.14 磁化曲线拟合器	•34
	4.15 须耗田线拟合器····································	•35
	4.16 电机测试辅助上具····································	•36
	4.16.1 电阻测量折算·······	•36
	4.16.2 计算测试温井	•36
	4.16.3 求等值电路参数······	·37
	4.17 计算器······	·38
	4.18 记事本······	·38
	4.19 槽满率计算与线模设计····································	·38
	4.20 线径换算	·39
	4.21 许用不平衡量计算····································	·39
	4.22 双叠绕组匝数为奇数的自动排列	·40
	4.23 空载特性分析	·41
	4.24 电机结构图	·42
	4.25 电磁设计计算单	·43
	4.25.1 文本格式计算单	·43
	4.25.2EXCEL 格式计算单	·44
	4.26 电机性能曲线	·45
	4.26.1 基本操作······	·45
	4.26.2 普通电机性能曲线和性能计算	·47
	4.26.3 变频电机曲线和性能计算······	·47
	4.26.4 输入数据绘制曲线······	·47
	4.27 设置漆包线漆皮厚度······	·48
第	「五章 设计参考	·49
	5.1 使设计计算更准确	·49
	5.2 设计铝线电机	·49
	5.3 制造工艺对性能的影响	·50
	5.4 关于磁密和设计方法 ······	·51
特	别声明	52
17		

软件使用手册 - 3 -

第一章 概 述

1.1 简要介绍

本软件是我公司自主开发的新一代三相异步电机自动优化设计软件,具有较高的智能自动化水平,可以将电机工程师从传统的电机电磁参数设计方面解放出来,用更多精力进行更具创新意义的结构和散热系统等设计,从而缩短产品开发周期、提高我国电机产品档次。

软件主要功能有:

- 1、根据输入参数计算电机性能,输出电磁计算单和性能曲线;
- 根据电机性能指标要求,优化电机方案。优化设计与电磁性能相关的各个零部件, 包括定子冲片、转子冲片、端环厚度、铁芯高度、绕组数据;
- 3、其他辅助设计功能,包括线模设计、线径换算、电阻温升计算、动平衡量计算、 试验数据分析、输出机械 CAD 图纸文件等等。
- 4、快速优化设计普通电机和高效电机、充水式潜水电机;
- 5、快速设计单绕组双速变极电机;
- 6、准确核算 1000Hz 以内变频性能,系数自动修正,精确匹配多种变频负载特性。

普通电机设计软件最有价值的功能是输入数据核算性能,那是给电机工程师代替手 工计算用的,没有电机电磁计算经验的人是用不了、也用不好的。而本软件除了可以输 入数据核算性能之外,真正最有价值的是[分层优化]功能,在结构和工艺参数已经决定 的前提下,几乎可以全自动的设计出性能最好、成本最低的电机。除了可以给工程师用 之外,只要对电机指标和制造工艺有一定感性认识的人,结合软件的提示说明,都能用 它搞好电机的电磁设计。

1.2 特色功能

这些特色功能是本软件独创,其他同类产品所没有的,包括:

1设计向导

用户可以在设计向导的提示下,快速熟悉本软件的操作,以极少的劳动量圆满完成电机 设计任务。

2基于π型精确等效电路的性能计算

可以输入任意指标的任意数值进行计算,而不是像普通软件那样,只能以输出功率或者转速来计算性能。每次计算所打出的文本自动添加到电磁设计计算单的末尾。

3 特定工作点

可以设置额定参数和工作点为不同状态进行性能计算,变压、变频、变极、改变接法等

软件使用手册 -4-

等特殊状态的电机性能计算极为方便。

4 三相电机数据管理

可以管理当今比较流行的三相电机软件的数据文件,包括:上科所三相电机软件、Ansoft Rmxprt 电机软件、MAGSOFT Motor-CAD、三相电机软件 TPCAD 等,原来使用其他软件的 用户无需重新输入数据,可以用本软件直接打开这些文件或数据库的数据进行设计计算。

5 性能曲线计算和负载特性曲线图

点击[性能曲线]按钮即可自动绘制电机负载特性曲线图,软件自动在图中标出各指标的 最大点,额定点位置可以在计算过程中任意设置。负载特性曲线图的横坐标可以选择任 意指标,可以为每条曲线设置颜色。曲线数据点可以保存为专有格式的文件,负载特性 曲线图可以保存为图片文件。

6详细的电磁设计计算单

计算过程中的数据均打出到电磁设计计算单,方便用户积累专业经验、进行深入分析。 电磁设计计算单可以保存为通用文本格式或 **EXCEL** 格式,交流方便,有利于企业无纸化 作业减低成本。

7专有文件格式,数据可以加密保存,调用已有数据更方便

本软件对三相电机方案数据,通用定子冲片数据,转子冲片数据,转子端环数据,空载 测试曲线数据,负载特性曲线数据等,采用专有文件格式,象操作 Word,SolidWorks 等软件一样,可以对文件直接保存、打开,派生设计新电机时打开原有部件(如定子冲 片、转子冲片、转子端环)数据即可,操作十分方便。同时,可以给所保存的电机方案 和部件数据进行高强度的加密,密码无法轻易破解;打开文件时,如果没有密码则直接 打开,否则将要求输入密码,只有输入正确的密码才能打开。

8不同部件自由组合

冲片端环等部件可以单独保存、单独打开,调用到新的电机方案中。

9不同部件,可自由选择不同单位输入

如定子冲片数据单位可以选择"毫米(mm)",而转子冲片数据单位可以选择"厘米(cm)", 转子端环数据单位可以选择"英寸(in)",彼此之间不会相互影响。转子斜槽的单位可以 选择"毫米(mm)"、"厘米(cm)"、"英寸(in)"、"一个转子齿距"、"一个定子齿距"。改变 单位后,软件对相关数值自动换算。

10 机械图纸直接输出

和电磁设计相关的机械图纸,软件可以直接创建输出 DXF 文件,如定子冲片、转子冲片、转子端环等,不需要依赖别的机械设计 CAD 平台。输出的图纸可以为任何二维、三维 CAD 软件所打开、导入、调用。

11 根据测试数据求取等值电路参数

软件使用手册 -5-

输入测试数据,即可求取等值电路参数。

12 全程可视化电机设计,自动绘制电机结构图,绕组端部连接图,可以自定义显示区大小,绘图颜色

电机设计全过程都在参数驱动图形的可视化环境下进行,彻底改变了过去设计人员直接 面向数字的设计方式,有效地避免了由于疏忽导致的数据错误。参数与图形同步变化使 设计人员能更合理调整电机结构,大大提高设计效率。

13 优良的界面设计,丰富的资料提示,高效即时不断更新的帮助系统

鼠标移动到输入窗口时,自动在显示区出现相应参考资料和操作说明,设计人员不必再 查手册,大大提高设计效率。

14 增强软件容错能力,智能处理输入数据正确性的检查

软件对用户输入数据的处理十分完善,只允许输入整数的地方,无法键入小数;只允许 输入数字的地方,无法键入字母和其他符号;小数框只能键入一个小数点;输完上一格 按回车自动跳到下一格,如果还未输入数据按回车则仍然不动;大大提高设计效率。同 时,用户即使输入错误,也不会出现如某些软件的永无休止的对话框,无法关闭软件、 只好强制结束进程甚至重新启动电脑的问题,对于用户的输入错误,本软件只弹出一次 提示信息。

15 功能强大、使用方便的曲线拟合器

磁性材料品种多,磁性能受各企业生产工艺影响。本软件不仅提供用户方便的库存磁性 材料修改方法,而且提供多种高效的磁化曲线拟合手段: A 可以通过分段成二次公式进 行拟合(推荐采用),B 可以通过"Froelich 法+一次插值"用规定的 4 点进行拟合,C 可 以通过输入数据点生成曲线,D 可以通过导入文本文件生成曲线。同时,也可以用两个 曲线文件进行叠加对比。

16 磁化曲线自动修正,变频电机设计更轻松

本软件输入 50Hz 下磁化曲线数据,电机工作频率为 5-1000Hz 时,软件可以自动对磁化 曲线进行较为精确的修正,从而提高变频电机的计算精度。

17 冷扎片冲裁自动修正计算

由于冲裁工艺对冷扎片冲片磁性能有一定程度的破坏,本软件可以对冷扎片冲裁进行修正计算。此项功能对小功率电机设计十分有用。

18 槽满率计算与线模参考设计工具

输入定子冲片数据,即可进行槽满率计算与线模设计。槽满率计算工具可以对线径、槽 内导线数、槽满率中的任意一项留空计算。空壳重绕修理计算的用户,可以用【绕组初步 设计】工具求匝数,用控制槽满率的办法求线径,操作十分简单。

19 线径换算工具

保持截面积一致,对不同线径和并绕根数进行换算。

软件使用手册 -6-

20 许用不平衡量计算工具

计算转子的许用不平衡量。

21 电阻温升换算工具

可以进行不同温度下电阻的换算,用电阻法算温升,反求材料系数等;可以将温升值折 算至额定电流下;可以对电机内部已经连接的绕组,计算每相电阻。

22 空载特性分析工具

输入若干点不同电压下的空载数据、额定电压、电阻,软件即可绘制空载特性曲线图, 求出额定电压时的输入功率、电流、铜耗、铁耗、机械耗。空载特性曲线数据可以保存 为专有格式,以后可以直接打开;空载特性曲线图可以保存为图片。

23 定子冲片辅助设计工具

可以用辅助线控制设计冲片;可以给定槽面积和齿轭磁密比优化设计定子冲片;可以根据配套转子片设计定子冲片。设计过程中可以用不同比例显示图形以查看细节,可以用 [设计信息]查看计算结果,包括:计算齿长、计算齿宽、计算轭高、轭部直径、槽口面积、槽肩面积、槽形面积、冲片面积、外径 x 外径+1mm 搭边的消耗、冲片总成本初步估 算等。设计结果可以直接输出 CAD 图纸。

24 转子冲片辅助设计工具

可以用辅助线控制设计冲片;可以给定齿宽和导条(槽)面积设计冲片,而转子片的合理 齿宽可以输入定子齿宽求得。设计过程中可以用不同比例显示图形以查看细节,可以用 [设计信息]查看计算结果,包括:计算齿长、计算齿宽、计算轭高、轭部直径、槽口面 积、槽肩面积、槽形面积、冲片面积、外径 x 外径+1mm 搭边的消耗、冲片总成本初步估 算等。设计结果可以直接输出 CAD 图纸。

25 转子端环辅助设计工具

只要用鼠标控制[运行性能优化度]的数值,即可自动设计转子端环。[运行性能优化度] 为6时,端环电流密度是转子导条的电流密度二分之一,推荐采用。

26 绕组辅助设计工具

输入电机额定参数和定子冲片,软件可以根据设置参数初步求取绕组的匝数和线径。空 壳重绕修理计算的用户更方便。如果用户有设计经验,此功能可达到相当理想的效果。

27 铝线电机设计功能

在绕组材料中选择[铝],即可自动设置铝线电机的所有相关数值,铝线电机设计更方便。

软件使用手册 -7-

1.3 适用范围

本软件是工程专用软件,适用于电机制造厂用于设计分相式三相电机,包括:常规电机、力矩电机、变频电机、变极电机等各种鼠笼式外转子三相异步电机的设计、维护、修理,具体:

1定子:圆底槽、平底槽、梨形槽。

2转子:圆底槽、平底槽、梨形槽、腰形槽。

3 定子线圈可以采用多并联支路多根并绕。

4可计算不同电压、频率下电机性能。

5 可计算 60 度相带、120 度相带绕组,以及其他各种自定义绕组。

6 定子绕组: 单层交叉式、单层同心式、单层链式、双层绕组,铜电磁线、耐水线、 铝电磁线。

7 铸铝转子或铜条转子。

本软件适用于电机工程师设计电机产品,同时,由于本软件具有较高的自动化程度和丰富的即时帮助信息,同时也非常适合于对电机结构有感性认识,能够准确测量电机各部件尺寸的人员。

1.4 帮助与服务

本软件作为专业的外转子三相异步电机设计专用软件,在即时帮助信息中集成了大量 的电机设计知识,只要认真学习软件自动跳出来的提示信息,将非常有助于您在电机设计理 论专业方面的提高。使用过程中,只要按照软件的提示信息一步一步往下操作,即使您对电 机设计理论没有了解,也能设计好电机产品。

如果您在电机设计实践中遇到困难,可以向我公司求助。我公司高薪聘请了对此类电 机有深入研究的专家,可以帮您分析、解决问题。(需要收取一定费用,具体费用视难度高 低、工作量大小而定)

我公司努力为用户提供最优质服务,您在使用软件过程中遇到任何问题,均可以和我公司联系,感谢您的关注和使用,祝您愉快!

正式购买我们软件的客户已经有六百多家,遍布中国的每个省和东南亚,典型客户包括中国科学院沈阳研究所、西安交通大学、河北工业大学、湖南工程学院等科研单位和格力电器、大洋电机等上市公司,以及包括6家台湾省电机企业在内的众多电机企业。而一年只有365天,每年给每个客户服务半天,我们就很忙了,我们编程开发软件的其实是社会底层做技术的苦力,衷心感谢所有用户的包涵、理解和支持!

软件使用手册 -8-

第二章 安装卸载

2.1 系统需求

一.前提

1 任意 Windows 系统电脑

2网页浏览器能正常工作(否则可能打不开帮助文件)。

3 鼠标键盘显示器能正常工作,硬盘具有 30M 以上空间。

4 企业正式版要求电脑至少具有 1 个 USB 端口。

5显存: 16M以上(过小可能造成帮助文件中操作演示动画无法显示)

6 屏幕分辨率: 1024x768(过小可能造成有些选项无法正常显示)

二. 性能

1. 推荐配置

1CPU: 奔腾 4 处理器 1.6GHz 以上

2 内存: 256M以上

2.基本配置

1CPU: 1.0GHz

2内存:64M

软件在基本配置下可以工作,但计算速度缓慢。

2.2 软件安装

安装之前的准备:

用具有管理员权限的账户登录 windows 系统,并暂时关闭杀毒软件和防火墙

企业正式版和硬盘注册版需要将特定的授权文件导入注册表。

开始安装:

WinXP 以下系统,直接双击软件的安装文件,即可启动安装程序,点下一步开始安装。

Win7、win8系统,先用右键单击软件的安装文件,在弹出的菜单中选择【属性】-【兼容性】,进行如下图的兼容性设置。然后双击安装文件,即可启动安装程序,点下一步 开始安装。

软件使用手册 -9-

<section-header>

按照软件的提示信息,不断选择<u>下一步</u>按钮即可完成安装。建议您不要选择在操作系统所在的分区中,以免重装操作系统时造成数据丢失。

安装完成后,您电脑桌面上、快速启动栏、程序菜单栏都有单相异步电机设计的快捷 方式,双击快捷方式您就可以启动软件了。

软件使用手册 - 10 -

2.3 安装答疑

2.3.1.为什么无法在电脑中安装软件?

对于不同的电脑系统,无法安装软件的原因可能都不同。因此,如果您遇到软件下载后 不能安装的问题,请您尽可能详细的向作者描述情况,有什么提示信息,做了哪些操作, 是什么系统,等等,对问题的状况反映的越详细,解决问题的时间就可能越短。

一般是系统文件丢失造成的」建议重装系统。

2.3.2.如果安装后点击无反映,可能的原因有:

2.3.2.1 试用版是可能没有安装成功需要重新安装、正式版可能是因为没有读取加密锁数据

2.3.2.2 杀毒软件将我们的正常软件误报为病毒,阻止软件运行,或在后台直接把我们软件删除了。这可能是某些免费杀毒软件的商业策略所致,并不是我们软件真的有问题。 下图 "**360** 软件开放平台"给我们回复的邮件。

件箱			Q ▼ 搜索	索 收件箱
a 🍸	发件人	X-	6	日期
日期: 星期				
	360软件开放平台 - 非常抱歉?	您通过360软件开放平台提交的软件无法处理!	0	2014年4月22日
⊧常抱歉! 圓360软件开放	您通过360软件开放平台提交的 ^{效平台}]软件无法处理!		
(件人: liuwo	net; opensoft			
	360软件开放平台			http://open.soft.
	亲爱的软件开发者			
	您好!			
	经360软件安全中心检测,您于201	14-04-22 13:29:18在软件开放平台提交的软件单	相异步电机	设计8.0
	(ID:1200252)审核未通过。			
	您提交的备注信息:我们软件没有剩	病毒的,只是加密了而已		
	拒绝原因:软件加强壳,无法检测	;如有需要请添加本地信任使用		
	360软件开放平台软件检测标准:h	ttp://open.soft.360.cn/guide/guide_2.html?i=4		
1				

260种住井台

软件使用手册 - 11 -

延伸阅读:360 为何屡屡误报我的软件? http://www.motorcad.net/Html/?2942.html

解决办法:关闭杀毒软件重新安装软件;安装好之后,如果杀毒软件报毒就添加为信 任软件,然后就可以正常使用了,具体操作请参考相关杀毒软件的操作说明。(当然并不是 所有时候都会报毒, 360 有时报毒有时候又不报毒,到底什么时候报毒什么时候不报毒, 这个规律我们不清楚。因此,只有报毒才需要添加为信任软件,如果不报毒就不需要这样 做直接可以使用)

2.3.3.安装后点击软件,电脑重新启动,可能的原因如下:

2.3.3.1 软件被非法修改,或运行在不安全的、非法调试破解的环境下

2.3.3.2 硬盘注册版软件没有将注册信息导入到注册表

2.4 软件卸载

如果需要卸载软件,您可以

1 通过控制面板启动卸载程序

2 在程序菜单中点卸载 外转子三相异步电机设计 启动卸载程序

所有程序 (图	D 📄 南牛外转子三相异步电机设计软件V3.0	0 / 🔝 外转子三相30
	注销 (L) (D) 关闭计算机 (L)	2 卸载 南牛外转子三相异步电机设计软件V3.0
🦺 开始	🥖 💈 🚱 👋 🛅 5 Windows Explorer 🔹	

卸载程序可以帮助您把本软件从您电脑中彻底移除。

軟件使用手册 - 12 -

第三章 快速入门

3.1 快速设计新电机

双击快捷方式启动本软件后,在屏幕中央有一"设计向导",只要按照"设计向导"的 提示,每一步**确认或输入**必要的参数,一步一步往下操作,就可以很快设计好一台新电机。

第一步,在【设计初始方案】界面中确认或输入参数,如下图:

🥼 设计向导	77-7	KP	
打开参考数据	设计初始方案	变极电机设计	变频特性核算
功能介绍			□ 不要自动启动本向导
1全新设计时,快速设 2利用现有定子设计产	设计初始方案,最终方案 →品时,可快速估算配套	3通过【分层优化】确定; 第的转子和绕组参数。	长度单位: <u>毫米mm</u> ===================================
	转子外径 01=		
额定频率(Hz) 50	转子内径Di1=	● 有定子,按实际输入	、 开始设计
电机极数(偶数)	铁芯叠厚 L =	定子齿宽	分层优化
输出功率 (KW)	定子槽数 Q2=	定子齿长	77/27/16/16

输入数据时注意软件主界面的操作提示,注意按软件的说明操作。如下图:

11 Q m 🖉 🖊 💆	/ 🔲 🗒 🐴 🛃 🖊 🖊
请输入电机极数,	注意应输入偶数

输入后点【开始设计】,等待一段时间,即得到初始方案,用户可以在此基础上进一步点【分层优化】,让电机的各部分优化得更合适。

歙僻 @ 周 手 册 - 13 -

3.2 快速进行电机改型设计

3.2.1 通过输入已有方案改型设计

首先把己有方案输入软件,已有方案的冲片和铁芯一般都能够在市场上直接买到,直 接在此基础上进行改型设计,可以节省开发新产品的时间和成本。

把数据输入软件并保存后,在软件的【设计向导】的【打开参考数据】页面,如下图:

🔔 设计向导		
打开参考数据设计初始	方案 变极电机设计	变频特性核算
设置文件格式外转子三相数据 (*. WI 👤	文件列表(双击可打开数据)	口不要自动启动本向导
选择文件目录 🖃 c: [WINXP] 📃 💌		#除文件
C:\	×~ !	
Trogram Files 一一南牛外转子三相异步电机设计	XY	更新替换原文件
B_H BMP		公民份化
Pfe 💉		刀压加化

先选择文件目录,再在文件列表中双击要打开的数据即可。

打开后,可以对其中任何参数进行更改,比如 380V 改成 500V 的电机,50Hz 的改成 60Hz 的电机,改变铁芯长、改变任何尺寸等等都可以由用户自由操作,改变后可以用【分 层优化】功能进行优化设计。

3.2.2 通过定子尺寸设计匹配的绕组、转子

只有定子尺寸,转子槽和端环尺寸未知时,可以在设计向导【设计初始方案】中,按 照实际使用的冲片输入**定子齿宽、定子齿长**,然后按一下【开始设计】按钮,软件将自动 设计与此定子片配套的转子片和端环、及定子绕组数据。

如果有必要,在按下【开始设计】按钮前,还可以在主界面对材料、绕组形式等等进行设置。一般情况下按软件默认的选择就可以了,无需设置。

软件使用手册 - 14 -

3.3 快速设计单绕组双速电机

第一步,得到单绕组变极电机的初始方案。可以用【设计向导】打开参考数据,或者 设计初始方案。也可以自己输入电机数据作为变极电机的初始方案。

初始方案的主要意义是确定材料和铁芯尺寸,包括定转子尺寸、槽数、槽型、铁芯长、 气隙宽度等等。在初始方案中与定子绕组相关的数据不影响设计的最终结果。

第二步,在【设计向导】的【变极电机设计】页面,如下图:

🏨 设计向导	K/P	
打开参考数据 设计初始	方案 变极电机设计 变易	顾特性核算
「单绕组变极设计步骤:1设计初始方案	,设置条件;2求布线系数;3开始设计一	□ 不要自动启动本向导
 ◎ 反接变极法 ○ 3Y/3Y 拱相法 ○ 	正弦变极法 线圈跨迎 [胃]	(当前定子槽数为槽)
▲ 本 极 其 末 招 招 数 2		*****
▲中位(0.00 - 万/市示数 输出功率Kw 谐波ΣS=	x to to x	水仰线承到
并联支路 2 节距互感	并联支路 1 节距互感0	T-44-21-21
● Ⅰ ● △ (自动计算值可修改)	O Y ⊙ △ (自动计算值可修改)	开始反计

在基本极和变极框中分别输入极数、功率、并联支路、接法,软件会自动选择变极方法和线圈跨 距,(一般软件自动选择的就可以了,但用户也可以更改,)然后点【求布线系数】按钮,得到单绕组 变极电机的布线方案,及其相关系数。如下图

R/开 443.		
Deleter and	当前皇示北伊因子:1,5069444 图形中心点坐标值 X= 161,798941798942 Y=-85,111111111111 青年三相局時也將於4枚ma 安敬疑語首節化[44]自然於其	基本計算 設計時間:
〇 9間至え〇 羽間用ら 〇 単原形(-〇 共転総統	一、 於國權利素權	1040318
2005402 (T)	12 E. 340.L 20. 39. 4 12 E9. 30. A 12 A* 5. T. 340. 40. 49. C 15 139. 120. C 12 4. E. 340. 90. 90. C 15 139. 130. C 12	WEATH THE
幸運至後京町 林勝和友宗町 1	5. 9. 340. 130. 130. 150. B E 240. 200. 9 E 94 6. 10. 340. 150. 150. 150. 6 E 500. 500. 8 E 94 7. 11. 340. 150. 159. 6 E 500. 5. 6 E 6	
Telestrict		8708 (020) 8987 p= 9
MERTY (0+106) 2.1"	122 4. 540. 150. 590. 8 16 660. 500. 8 正 8- 二	
等件至数(p(ce) 8.9 個UNE (ce) 2.5	#15:10年 2011-102 102 102 102 102 102 102 102 102 102	「日本語」というない
新新工作 vm.) 2 正正明 単大学	and Constraint Control of Constraint Control of Control	Matsia an
	● 202 学校 十算 (102 102 103 103 103 103 103 103 103 103 103 103	计算经影
等值 1)并限制数- 等值 1)的空(m) 2	##236 / 1000/11/2000 ##236 / 1000/ ###256 / 1000/ ###256 / 1000/ ###256 /	1.7.7.22
年間,218時至(m) 2 非時交換者	C相关量角度199.度 发展大小177.798 并有系数0.3853 但图系数0.58801 按图系数0.77 至50.0847 计量:考相关量值度应至至 140克,于量大小应相等,分词为不可能除引,需要起制不匀物度14页数量数,有相属和方面进行调整。)	約1971升30年 秋田小田本
10月1日日 Ba - 840 10月1日日 Ba - 840		書型计算单
		ant+
		~

如果用户使用的方案与软件自动优化排列的方案不同,可以直接输入系数。然后点【开始设计】设计绕组的线径和匝数。

软件使用手册 - 15 -

3.4 核算变频特性

在特殊条件下,普通电机配上变频器也可以当做变频电机使用。因此,变频电机的电磁方案设计跟普通电机基本相同,只是要注意:

定子绕组方面:变频电机高频高压时的绝缘、低速时的散热、高频时的集肤效应等问题。在满足生产工艺要求的前提下,在选择电磁方案时,变频电机的线径尽可能的小,并 绕根数尽可能多。

转子方面:尽可能的采用平底槽或梨形槽,不需要采用深槽,因为不需要牺牲运行性能来改善起动性能。

核算电机的变频特性步骤如下:

第一步,打开或设计电机方案。如果原来的方案线径很粗,则尽可能的改成多根并绕。 第二步,在【设计向导】-【变频特性核算】中,设置变频器 V-f 曲线和负载,点【变 频曲线】即可规定负载特性下的核算变频曲线。下图是前段为恒扭矩、后段为恒功率的变 频特性曲线。

有一些负载随转速改变的场合,变频器电压频率 V-f 曲线可以设置为【递减曲线】,此时,负载是转速的函数,可以设置为转速的指数次方,软件默认是 3 次方,用户可以更改使 之与实际负载相符。当指数设置为 0 时,实际上就变成了恒定的负载。

软件使用手册 - 16 -

3.5 快速核算电机性能

启动本软件后,关闭"设计向导",工具栏上有如下6个按钮:

文件	帮	助			
۲	0	4	P	P	۲

每一个按钮对应左边的一页数据,按钮为下压状态时,为当前页面。

6 页数据分别为: 【额定参数】 【外转子冲片】 【内定子冲片】 【转子端环】 【结构与材料】

【绕组参数】

所有数据全部输入后,可以通过右边的按钮全面核算电机性能,如下图:

软件使用手册 - 17 -

第四章 功能详解

4.1 主界面

双击快捷方式启动本软件后,关闭"设计向导",即可看到如下图所示的主界面,它由 上至下分为标题栏、菜单栏、工具按钮栏、提示信息栏、主功能区、软件标识(状态)栏, 图书中书 生产当者异体电机的计算 \$VI Con March RITE 核制主机 mrs.i+W 化增差数 and model of OF OF OF 2. IT. 01 04 E TO ONL 计算法输 **C** 7 르카나파 (10)-10 P TTT: RA 建立计算机 位置字件 188系统上标卡和现象中和现象的有一种中心。2012年来,1993年来他们的中国国际新生 will norvest why must 而主功能区左边为数据区,中间为显示区,右边为功能区

标题栏----包含软件名称(南牛外转子三相异步电机设计软件 V4.0——鼠笼式三相 异步电动机分层多目标自动优化系统),和用户的公司名称(刚打开软件时软件默认为 www.MotorCAD.net 可以在工具按钮栏中点》进入<u>系统设置</u>页面进行修改),设计的电机 方案的名称(刚打开软件时软件默认为未命名设计方案,在<u>电机型号</u>中输入文字后软件会 自动变化)。

菜单栏----包含<u>文件</u>和<u>帮助</u>菜单。

其中 <u>文件</u> 菜单包	含打开数据] 菜单4个:	打开三相异步电机	1数据、打开定子冲片数据、
打开转子冲片数据、	打开转子站	端环数据; 1	保存数据菜单4个	:保存三相异步电机数据、
保存定子冲片数据、	保存转子冲	中片数据、	保存转子端环数据	; 输出机械图纸菜单3个:
创建定子冲片 DXF 文	件、创建转	专汗冲片 DX	F文件、创建转子站	耑环 DXF 文件; 将显示区保

软件使用手册 - 18 -

存为图片菜单1个。

帮助菜单包含帮助主题、关于。

工具按钮栏----包含 27 个按钮,分为5组:

第1组:数据按钮6个, **图 ◎ ☆ P 回 ◎** 分别为1<u>额定数据2定子冲片3转子冲</u> 片4转子端环5结构与材料6绕组参数。

第 2 组:设计按钮 3 个, ¹ ⁽¹⁾ ⁽²⁾ ⁽²

第3组:系统按钮4个, 🎾 🗹 🕗 🔄,分别为1<u>系统设置2</u> 磁化曲线拟合器3<u>损</u> 耗曲线拟合器4管理电机数据

第4组:辅助设计工具按钮7个, 🔟 💭 🛀 🖊 🖊 🖉,分别为1<u>计算器2记事</u> <u>本3槽满率计算与线模设计4线径换算5许用动平衡量计算6电阻温升换算7</u>空载特性 分析

第5组:<u>电机结构图</u>按钮7个, ♀♀♀♀◆ ♀ ╱ थ¹⁰,分别为1放大电 机结构图2缩小电机结构图3窗口查看电机结构图细节4(按实际大小)1:1查看电机 结构图5移动电机结构图6重画电机结构图7自定义显示区尺寸

提示信息栏----给用户的提示信息,用户操作时应注意这里的提示。特别重要!!!

🏨 南年外转子三相异步电机设计软件¥3.0 [www.RotorCAD. 🞰 🚺 水素 葡萄设计方案]

主功能区的数据区包含了6页数据,和工具按钮栏6个数据按钮一一对应,当按钮为下压状态时,那页的数据就显示出来。

主功能区的显示区用来显示相关电机设计资料知识、电机结构图、电机性能曲线、 电磁设计计算单。各种显示状态之间软件会根据操作状态自动变换。输入或修改设计数 据的时候软件自动显示相关的电机设计资料知识,输入完尺寸后自动绘制电机结构图,计 算了电机性能曲线后自动绘制电机性能曲线,计算了电磁设计计算单之后则自动显示电 磁设计计算单。

主功能区的功能区有4个计算按钮用来<u>计算电机性能</u>,有4个计算单的操作按钮, 分别可以显示、保存、打印、清空计算单。

<u>软件标识(状态)栏</u>----包含软件版权标识,版本标识,软件最后更新时间,和当前操作时间。点击软件版权标识会打开我公司网站<u>http://www.MotorCAD.net</u>点击软件版本标识会启动一封主题为"关于《外转子三相异步电机设计 4.0》软件"、发送到 liu@MotorCAD.net</u>的邮件

歙侔儢周手册 - 19 -

4.2 文件菜单

4.2.1 保存和打开数据

本软件的数据采用专用格式保存。软件安装并正常运行后,文件夹中以下格式的文 件图标显示如下图,一般用鼠标双击即可打开此数据文件,如果数据是加密保存的,则 要求输入密码才能打开。和其他 Windows 程序如 Word 等的操作完全一致。

- 1、外转子三相异步电机方案文件(*.Wpmotor)
- 2、定子冲片文件(*.Sta_Sheet)
- 3、转子冲片文件(*.Rot_Sheet)
- 4、转子端环文件(*.Rot_Ring)
- 5、三相异步电机空载曲线文件(*.Konq)
- 6、电机负载曲线文件(*.TpCht)
- 7、磁化曲线文件(*.B_H)
- 8、损耗曲线文件(*.Pfe)

(本节只解释前4种文件的操作,后4种文件的操作在后面相关章节中)

🏩 南牛外转子三相异步电机设计软件 🛙 3. 0

文件 帮助

中的文件可能已经并不存 在(由于文档管理等原因移 动、改名或者删除了)。

2 🗙

3.保存数据时如果软件系统设置了密码,则所有文件自动加密保存。

软件使用手册 - 20 -

4.保存数据时文件名不能输入****,**/**,**?**,*****等 windows 系统定义特殊功能和含义的字符,否则****号可能改变保存目录,让您找不到您自己保存的文件在哪里,而**/**,**?**,*****号则为无效输入,导致无法保存文件。(对于其他 windows 应用软件也是一样的)

4.2.2 输出机械 CAD 图纸文件

初日内区且及相田位	
南牛三相异步电机设	计软件¥5.0—— 最笼式三相异步电动机分层
2件 帮助	
打开三相异步电机数据	19a 🖉 🖉 🖉 🖪 🖉 🐴 🕨
打开定子冲片数据	前操作: 输入电机型号。建议您输入容易识别的
打开转子冲片数据	
打开转子端环数据	J.
保存三相异步电机数据	
保存定子冲片数据	
保存转子冲片数据	
保存转子端环数据	747
创建定子冲片DXF文件 —	——将当前设计的定子冲片输出CAD图(*.dxf格式)
创建转子冲片DXF文件 🛶	——将当前设计的转子冲片输出CAD图(*, dut格式)
创建转子端环DXF文件 —	——将当前设计的转子端环输出CAD图(* dxf格式)
将显示区保存为图片	

输出的 DXF 文件可以通过任何机械制图 CAD 软件打开,比如 AutoCAD2000、CAXA 电子 图板、Solidwork2006、ProE2003、UG18 等等。

4.2.3 将显示区保存为图片

可以通过【文件】**à** [将显示区保存为图片] 菜单,将显示区的结构图、曲线、资料等保存为图片。

飲件使用手册 - 21 -

4.3 帮助菜单

一、点击菜单帮助-->帮助主题,或者按键盘 F1,即可打开帮助文件,它是 CHM 文件格式文件,其内容为软件使用手册。

CHM文件格式文件是 windows 默认的帮助文件,如果打不开请检查您的 windows 目录 下是否有 HH.EXE 文件(如 C:\windows),系统目录(如 C:\windows\system32)下是否有 itss.dll 和 hhctrl.ocx 文件,如果没有,请从其它计算机中拷贝过来。

二、点击菜单帮助-->关于,即可打开如下界面,移动鼠标,当鼠标变成一只手的 样子 时,单击左键可以打开网站;当鼠标变成一只封信的样子 时,单击左键 可以启动一封主题为"关于《外转子三相异步电机设计 3.0》软件"、发送到 <u>Liu@MotorCAD.net</u>的邮件。用微信扫一扫左上角的二维码,即可添加南牛微信服务公众 号。

点击关闭,可以关闭此窗口。注意:此窗口是独占模式,必须关闭它本窗口,才能 进行其他操作。

软件使用手册 - 22 -

4.4 额定数据

首先提示:本软件对用户输入数据的作及时过滤检查,只允许输入整数的地方, 无法键入小数点;只允许输入数字的地方,无法键入字母和其他符号;小数框只能键 入一个小数点;输完上一格按回车自动跳到下一格,如果还未输入数据按回车则仍然 不动;如果在本页的最后一项输入数据后按回车,软件可自动转入下一页面。

因此,要输入小数点时,应该将中文输入法关闭,否则

按键盘上小数点键是没有任何反应的… **到全拼 →** "● **B** 输小数点时要关闭!

打开软件,或者进行了其他操作后点击工具按钮 ²², 即可弹出如右图所示额定数据页面,按照实际输入或选择即 可。

注意事项:

1电机型号:最好不要输入****,**/**,**?**,*字符,因为保存数据时电机型号会出现在默认的文件名中,参看<u>文件菜单</u>。

2 线电压

3 额定频率:一般为 50-60Hz。

4 电机极数: 应输入偶数。

5 输出功率

6 绝缘等级: E 级、B 级按 75℃计算电机性能, F 级、H 级按 115℃计算电机性能;另由于温升限值不同,选择不同的绝缘等级,软件在<u>自动设计与优化计算</u>中默认的热负荷数 值会有所不同。

7 计算温度

8 冷却方式:选择不同的冷却方式绝缘等级,软件在<u>自</u> <u>动设计与优化计算</u>中默认的热负荷数值会有所不同,对于核 算性能无关。

9 电机方案说明备忘:可以输入任何字符

🐻 🙆 省 🖿 🐼 🔕
申机型号Y200L2-6
线电压 (V) Un= 380
额定频率Hz f= 50
电机极数 p= 6
输出功率 Pn= 22000
单位 💿 🛛 🖸 КЖ
说明:极数应输入偶数
● P纺绳络 ● P纺绳络
● B级绝缘 ● H级绝缘
计算温度(°C) 75
电机方案说明备注:
*
< 5

軟件使用手册 - 23 -

4.5 外转子冲片

4.5.1 输入数据注意事项

打开软件,点击工具按钮 ¹,即可弹出如右图所示外转子 冲片数据页面。

注意事项:

1如果无法输入数据,请参考额定数据页面中的"首先提示"

2 在输入数据过程中,可以点绘制电机结构图的相关按纽。 如果输入数据有错误,图形中会显示出来。参看<u>转子冲片</u>数据输 入图示说明

3 输入单位:可以选择毫米(mm)、厘米(cm)、英寸(in), 一般按照软件默认的毫米(mm)即可,以便和其他 CAD 制图软件 单位统一,对照图纸时数字上更直观。

4转子外径:由结构设计和电机体积决定,直接输入。

此处应注意电机结构的对电磁性能的影响,工艺槽孔影响后的折算办法:

A.转子叠压采用扣片槽、氩弧焊槽,转子外径按定子圆形直径机械尺寸直接输入。

B.转子叠压采用铆钉孔、高速冲自动叠扣, D1=Dm+(D-Dm)/Nm 其中:D----转子圆形直径

> Dm----铆钉孔(或高速冲扣槽)位置直径 Nm----铆钉孔(或高速冲扣槽)的个数

转子外面的机座为铸铁、钢板等导磁材料,配合紧密,电磁 计算时可以在上面的基础上加K*机座壁厚(K取0.1-0.2,导磁性 能好时取大值)。

5转子内径:请输入冲片毛坯的尺寸,加工后的实际尺寸软件会根据毛坯和气隙进行计算。可先参照样品(或同极数电机冲片的内外径比)初步输入,然后任意设计一电机数据,如果电机定转子齿轭各部分磁密分布合理,则可以确定采用此尺寸;如果转子轭部磁密太低,到了不合理的程度,必要时可以适当缩小转子内径重新设计。

6转子槽数:参考软件提示信息,根据经验输入。

7 槽型选择:选择圆底槽或平底槽,一般采用圆底槽有较好的性能。如果槽型并不 是单纯的平底、圆底,而是平底、圆原底、斜底混合,则需要适当折算才能计算,保持 槽面积和齿宽都不变,如果更接近于圆底槽就把它折算成圆底槽,如果更接近于平底槽 就把它折算成平底槽。当然这样做是近似计算,但一般误差并不大,在工程实践上是可 以接受的。

8 其他尺寸: 按照软件图片提示输入即可。

软件使用手册 - 24 -

4.5.2 转子冲片设计

点击定子冲片数据页面底部的设计按钮,即可弹出如下左边第一图所示定子冲片设 计对话框。点设计菜单中的 3 种辅助设计方法,弹出如下后面 3 图所示界面,按软件提 示输入相关数据后按设计按钮即可。

所设计的转子冲片,数据显示在主界面的数据 区,可以通过出图菜单,将 CAD 图纸发送到 AutoCAD 或者直接创建 DXF 文件。图形显示在主界面的显示 区,可以通过显示菜单进行控制,也可以通过主界 面工具按钮操作。

4.5.3.转子冲片计算信息

点击定子冲片数据页面底部的<u>信息</u>按钮,即可 弹出定子冲片的各种计算信息。如右图所示。

🥷 南牛外转子三相异步电机设计软件 🛛 3.0 [www.llotorCAD.n

软件使用手册 - 25 -

4.6 内定子冲片

4.6.1 输入数据注意事项

打开软件,点击工具按钮 ⁴,即可弹出如右下图所示内定子冲片数据页面。注意: 1 如果无法输入数据,请参考<u>额定数据</u>页面中的"首先提示"

2 在输入数据过程中,可以点绘制电机结构图的相关按纽。如果输入数据有错误, 图形中会显示出来。

2 输入单位:可以选择毫米(mm)、厘米(cm)、英寸(in),按照软件默认的毫米(mm)即可,以便和其他 CAD 制图软件单位统一,对照图纸时数字上更直观。

3内定子外径:此处是输入冲片的毛坯尺寸,请保持与定子内径完全一致**(**包含气隙 宽度**)**。如果此数值改动,转子内径也自动变化。

4定子内径:为轴外径尺寸。

5 定子槽数:参考软件提示信息,根据经验输入。

6 槽型选择: 选择圆底槽、梨形槽或平底槽。

如果槽型并不是这三种之一,则需要适当折算才能计算,保持槽面积和齿宽都不变, 将其折算成相近的槽形。当然这样做是近似计算,但一般误差并不大,在工程实践上是 可以接受的。

7闭口槽:如果是闭口槽,在其中打勾选中即可。一般闭口槽转子的槽形为梨形槽。

8 其他尺寸:按照软件图片提示输入即可。注意是输入冲片尺寸,为未加工的尺寸。

软件使用手册 - 26 -

4.3.0 定子冲片设计

点击转子冲片数据页面底部的设计按钮,即可弹出如下左边第一图所示定子冲片设 计对话框。点设计菜单中的2种辅助设计方法,弹出如下后面2图所示界面,按软件提 示输入相关数据后按设计按钮即可。其余操作和定子冲片设计完全一致。

4.6.3 转子冲片计算信息

点击转子冲片数据页面底部的信息按钮,即可弹出转子冲片的各种计算信息。和<u>定</u>子冲片页面操作完全一致。

4.7 转子端环

4.7.1 输入数据注意事项

打开软件,点击工具按钮 ▶,即可弹出如右图所示转子端 环数据页面。

注意事项:

1如果无法输入数据,请参考额定数据页面中的"首先提示"

2 在输入数据过程中,可以点绘制电机结构图的相关按纽。 如果输入数据有错误,图形中会显示出来。参看<u>转子冲片</u>数据输 入图示说明

3 长度单位:可以选择毫米(mm)、厘米(cm)、英寸(in), 一般按照软件默认的毫米(mm)即可,以便和其他 CAD 制图软件 单位统一,对照图纸时数字上更直观。

4端环外径、端环内径、端环厚度、上部宽度:如果两端一 致,按实际输入;如果两端不一致,取其两端尺寸的平均值输入。 5斜槽:按实际输入,设计时一般取一个定子齿距或更大,

实际中采用略大的斜槽有利于控制电机的振动和噪音。

软件使用手册 - 27 -

● 转子端环设计 设计 出图 显示 □ 自动设计端环尺寸-

6 导体材料:根据材料按提示输入。如果电机的起动转矩要 求特别大,额定工作转速低,则需要用高阻铝,电阻率可能达到 8-16

4.7.2 设计转子端环

点击转子端环数据页面底部的设计按钮,即可弹出转 子端环界面。再在此界面中点设计**a**端环自动设计菜单, 出现如右上所示截面,选择合适的运行性能优化度即可进 行设计。

运行性能优化度大,适合于 转差率小的电机,设计的转子端 环厚度较高,运行性能较好而启 动性能较差,相反运行性能优化 度小,适合于转差率大的电机, 设计的转子端环较薄,运行性能 较差而启动性能较好。

4.7.3 转子端环计算信息

点击转子端环数据页面底部的信息按 钮,即可弹出转子端环的各种计算信息。和 <u>转子冲片</u>页面操作完全一致。

歙僻儢周亭册 - 28 -

4.8 铁芯结构与材料

打开软件,点击工具按钮 🖻,即可弹出如右下图所示铁芯 结构与材料数据页面。

注意事项:

1 如果无法输入数据,请参考<u>额定数据</u>页面中的"首先提示" 2 在输入数据过程中,可以点绘制电机结构图的相关按纽。 如果输入数据有错误,图形中会显示出来。参看<u>转子冲片</u>数据输 入图示说明

输入说明:

1 输入单位(气隙和叠厚的单位):可以选择毫米(mm)、 厘米(cm)、英寸(in),一般按照软件默认的毫米(mm)即可,以 便和其他 CAD 制图软件单位统一,对照图纸时数字上更直观。

2 气隙宽度:指定转子之间的间隙(单边)。

3 定转子叠厚:按实际输入,或者留空白,以后在<u>自动设计</u> <u>与优化计算</u>中让软件自动设计。

4叠压系数: 0.92-0.98, 按材料质量选取。

5 磁化曲线文件和损耗曲线文件必须放入与软件同一目录

下的 **B_H** 文件夹和 **Pfe** 文件夹,软件才能读取数据进行计算。这是软件读取数据的 规定路径。用户可以点有三个黑点的红色按钮,打开所要曲线文件到当前设计中。

6 其他: 请参考软件中提示信息,软件中的提示信息内容非常详细,请注意阅读。

文件 帮助	
🖻 🔕 🏘 📔	🖻 🧿
铁芯数据——	
输入单位 厘米((cm) 🔽
气隙宽度 g =	. 05
定转子叠厚 L =	22
□ 定转子径向通	「「「」」
	且交错 石态进
□ · □ · □ · □ · □ · □ · □ · □ · □ · □ ·	
宽度	0
转子通风道数	0
宽度	0
铁芯叠压系数	. 95
密度(g/cm)	7.8
<u>价格(元/kg)</u>	5.5
磁化B-H曲线文(牛
DR510-50. B_H	
<u>1</u> 页耗B-P曲线以1 DR510-50, Pfe	Ŧ
□ 冷轧片冲载(修正
齿部铁损系数	3
轭部铁损系数	2.5
空载机械耗(W)	130.57
杂散损耗(W)	440

(2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)

日中显

● 单层
 ● 单层

○ 单层

线圈跨距

绕组分布

谐波磁导

节距互属线圈长属

- 材料设置

●铜 (

电阻率(9

导体价格

导体密度槽锲厚厚

槽紙厚厚

漆皮厚厚

软件默; 绕组参数

⊙ 星飛

导线(1)并

导线(1)线径(mm)

导线(2)并绕根数

导线(2)线径(mm)

毎槽匝数 Nm =

毎线圏匝数

并联支路数

绕

������������������� - 29 -

🖾 🙈 🗅 🗁 👝 👘 🖉

4.9 绕组设置与参数

打开软件,点击工具按钮 🥺,即可弹出绕组 设置与参数数据页面。

绕组设置:

1 绕组类型:软件会根据槽数极数自动选择, 用户也可以自己更改,如果绕组图形显示不正常, 则说明无法构成此类绕组。

将双层同心绕组的小圈匝数设置为 0,则可以 构成【单双层绕组】

2 线圈跨距:"双层叠绕"和"其他绕组"需要输入跨距,其他类型的绕组不需要跨距。单位为槽。

3绕组系数:一般无须输入,由软件自动计算。 选择"其他绕组"时,可手工输入**3**个系数

4线圈长度系数:正常长度为1,比正常的长 (比如潜水电机等等绕组端部较长的)则输入大 于1的数,反之输入小于1的数。

5绕组布线设计:可以设计各种自定义绕组

材料设置:

按软件提示输入,如计算的电阻或重量和实际不符合,可修正输入的电阻率或密度。在同一种工艺条件下,一个规格的电机计算准确,那么 在派生设计其他规格时也能计算准确。

绝缘材料按实际输入。会影响到有效槽面积 的计算,进而影响到槽满率的计算。

绕组参数:

1 接线方式按实际选择。普通用途的电机一般大于 4Kw 的电机为三角形(△)接法, 小于于 4Kw 的电机为星形(Y) 接法; 变频电机一般宜采用星形(Y) 接法。

2 并绕根数和线径:对于电流较大的电机,如果采用 1 根导线的话,需要比较大的线径,工艺性差,因而可以采用多根并绕。可以采用线径换算工具[▶]进行换算。如果只采用一种规格的导线,那么导线(2)可以留空白。

3并联支路数:小功率电机一般为1路,功率比较大时可以等于电机极数。

3每槽匝数:按实际输入,特殊绕组时可以输入小数进行计算。

4 每线圈匝数:显示为"大小包"时,可点【绕组布线设计】,软件可自动排列大小包的匝数;显示为"不能用"时,请修改设计。

宁波高新区南牛电机技术有限公司宁波高新区江南一品广场 311 号楼 1108 室 联系电话:0574-87910951 手机:13071986828 公司网站: <u>http://www.MotorCAD.net</u> 技术服务 QQ 号码:106553993 电子邮件:<u>liu@NotorCAD.net</u> <u>liuwqnet@163.com</u>

Y 🗭 🖂 🎯	
<u>l</u>]	当前操作:绕组
《不正常,则说 ————————————————————————————————————	绕组型式的选择与设计
封 ○ 双层叠绕	
Σ叉 Ο 双层同心	60度相带等匝绕组有主
司心 〇 其他绕组	软件款认的远锋,适用网
〔(槽)	单层同心——2极时每
i系数	单层交叉一一每极每枚
žs	单层链式一一每极每相
嫁数	"对层同心"和"其他
系数 1	不等匝绕组等等;"其
且布线设计	10 1 1 1 1 1 1 1 1 1 1
	一、制八茎中梦叙
• 4 S	输入完了建数 据数
1 日 〇 耐水线	输入定子槽数、极数、 然后隔相联结。
1 ○ 铝 〇 耐水线 2*10Km) 2.17	输入定子槽数、极数、 然后隔相联结。
1 日 〇 耐水线 2*10Km) 2.17 (元/kg) 70	输入定子槽数、极数、 然后隔相联结。 二、软件自动设计 注释相带 输入腔距。
日 日 〇 市 (元/kg) (元/kg) (元 (kg) (8.9	输入定子槽数、极数、 然后隔相联结。 二、软件自动设计 选择相带、输入跨距, 说明:一般应选用60周
日 日 〇 日 〇 市/kg) 〇 (g/cm) 日 日 〇 〇 〇 〇 〇 秋 銭 (元/kg) 〇 〇 〇 〇 秋 銭 (元/kg) 〇 〇 〇 〇 〇 〇 秋 銭 (元) 〇 〇 〇 〇 〇 〇 秋 銭 (元) 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇	输入定子槽数、极数、 然后隔相联结。 二、软件自动设计 选择相带、输入跨距, 说明:一般应选用60度 距,以便构成单层绕组
日 〇 耐水线 2*10Km) 2.17 (元/kg) 70 (g/cm) 8.9 [(mm) 1.5 [(mm) 0.2	输入定子槽数、极数、 然后隔相联结。 二、软件自动设计 选择相带、输入跨距, 说明:一般应选用60月 距,以便构成单层绕组
日 〇 耐水线 2*10Km) 2.17 (元/kg) 70 (g/cm) 8.9 f (mm) 1.5 f (mm) 0.2	输入定子槽数、极数、 然后隔相联结。 二、软件自动设计 选择相带、输入跨距, 说明:一般应选用60周距,以便构成单层绕组 三、调整设计结果 本软件首先把任何绕线
日 日 の 間 の 耐水线 2*10Km) 2.17 (元/kg) 70 (g/cm) 8.9 5(mm) 1.5 5(mm) 0.2 5 文件	输入定子槽数、极数、 然后隔相联结。 二、软件自动设计 选择相带、输入跨距, 说明:一般应选用60度 距,以便构成单层绕组 三、调整设计结果 本软件首先把任何绕组 组也按照不等匝绕组的
日 O 耐水线 2*10Km) 2.17 (元/kg) 70 (g/cm) 8.9 E(mm) 1.5 E(mm) 0.2 E文件	输入定子槽数、极数、 然后隔相联结。 二、软件自动设计 选择相带、输入跨距, 说明:一般应选用60月 距,以便构成单层绕组 三、调整设计结果 本软件首先把任何绕组 组也按照不等匝绕组的 对于无法构成对称磁势
日 〇 耐水线 2*10Km) 2.17 (元/kg) 70 (g/cm) 8.9 E(mm) 1.5 E(mm) 0.2 E文件	输入定子槽数、极数、 然后隔相联结。 二、软件自动设计 选择相带、输入跨距, 说明:一般应选用60月 距,以便构成单层绕组 三、调整设计结果 本软件首先把任何绕组 组也按照不等匝绕组的 对于无法构成对称磁势 组),可对软件自动排列
日 O 耐水线 2*10Km) 2.17 (元/kg) 70 (g/cm) 8.9 [(mm) 1.5 [(mm) 0.2 [文件	输入定子槽数、极数、 然后隔相联结。 二、软件自动设计 选择相带、输入跨距, 说明:一般应选用60周 距,以便构成单层绕组 三、调整设计结果 本软件首先把任何绕组 组也按照不等匝绕组的 对于无法构成对称磁势 组),可对软件自动排列 对于某些增内上下层的
日 ○ 耐水线 2*10Km) 2.17 (<u>元/kg</u>) 70 (g/cm) 8.9 [(mm) 1.5 [(mm) 0.2 [文件 (Y) ○ 三角形 +绕根数 1	输入定子槽数、极数、 然后隔相联结。 二、软件自动设计 选择相带、输入跨距, 说明:一般应选用60度 距,以便构成单层绕组 三、调整设计结果 本软件首先把任何绕组 组也按照不等匝绕组的 对于无法构成对称磁势 组),可对软件自动排列 对于某些槽内上下层等 (注:相属和电流了两列

比例。

四、相关系数计算

本软件计算公式以矢量

相关系数主要有:主波

率越高;其他系数越小

设计时可依据不同绕组

软件使用手册 - 30 -

4.10 设计向导

打开软件,或者点击工具按钮,即可弹出设计向导页面。操作见 3.1 快速设计新电机

4.11 分层优化

4.11.1 条件设置

打开软件,点击工具按钮¹,即可弹出自动设计与优化计算页面,如下图所示。请按照设计任务书要求和工艺水平输入相关指标、设置相关选项。

ጫ 分层优化			K	
 额定指标设置+关键指标判断 额定指标为 额出场率 指标值为 最大转矩倍数大于(倍) 起动转矩倍数大于(倍) 起动电流倍数小于(倍) 	 额定点性能指标判断 输出功率(W)大于 转速r/min大于 功率因数cos大于 0.5 额定效率(%)大于 2000 	设计选项 ○ 定子沖片 ○ 转子沖片 ○ 韩不厚度 ○ 铁芯高度 ○ 绕组数据	按左边的额定功率转速, 转起力 OX.m 基准槽满率 78 (%) ☑ 只输出合格的设计方案 开始设计	设计结果处理(点 击设计结果列表头 即以此项目排序) 导出到EXCEL 保存为文本
_序号 合格 绕组线径, mm 1	与 毎槽匝数 │ 总成本, 元	毎相电流A	輸入功率₩ 輸出功率₩	│转速,r/min 转矩№
<				>

设置说明:

1 一般应选中"只输出合格的设计方案",这样只要在合格方案中作比较,便 于选择方案。

2 输入原来的数据进行核算、打出电磁设计计算单时,相关数据会自动留出一 定余量输入到本页面的对应文本框中;只要按【开始设计】按钮,得到的合格方案 即可和原来数据的性能保持基本不变。

3指标要求尽可能放宽,对于无要求的指标,可保持软件默认数值不变,或放得更宽一些。以便输出更多的合格设计方案供选择。

软件使用手册 - 31 -

4.11.2 功能选择

在自动设计与优化计算页面上部中间,可 以进行优化设计功能的选择,如右图所示。依 此选择可以自动设计定子冲片、转子冲片、端 环厚度、铁芯高度、绕组数据,按照软件提示 操作即可。

冲片最优设计原理:

当槽面积一定时,可以有不同的槽宽和槽深,(也就是齿宽和轭宽不同),通过对不同 组合进行计算,得到的安匝数(也就是激磁磁势)最小时为最优冲片,因为安匝数最小的冲 片所需要的绕组匝数最少,而安匝数最小的冲片槽宽和槽深的组合是唯一的。也就是说, 当槽面积一定时,最优的槽宽和槽深组合只有一种。

定转子冲片的槽宽和槽深是对电机性能、成本影响很大,采用传统的设计方法,凭 经验数值试算几次,得到的结果虽然可行,但往往并非最佳。应用本软件对市场上很多 冲片核算,结果表明,绝大多数还有较大优化的余地,可以在保持原来性能的基础上, 节省用铜 **10-45%** 可以产生很大的效益。

4.11.3 结果处理

设计完成后,可以:

1 点击列表头可以此项目数值的第一位排序,点一下从大排到小,再点一下从小 排到大。比如在[序号]两个字上点击鼠标,其排列结果如下图所示

- 2可以拖动横向或纵向的滚动条,查看所有项目的数据。
- **3**选择其中一行用鼠标双击之,可以将设计结果输到主界面,并打出设计计算单。
- 4 将设计结果导出到 EXCEL,或者保存为文本文件。

嗅自	动设计	与优化计算							. 🗆 🔀
- 额定 額定 指标 (最大報 起动報	指标设置 指标为 Ⅰ 有方 一 下 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	+关键指标判断 ③速r/min	 额定点性能 输出功率(#) 转速r/min大 效率(%)大子 功率因素大 	諸称判断 大于 15000 大子 15000 そ 86 子 .82 天 1210	 设计选项 ○ 定子冲 ○ 转子冲 ○ 转子冲 ○ 執环厚 ○ 铁芯高 	按设置额 定转的 18.7A 基准槽满 度 ☑ 只输出	定指标计算, 额 8N.m, 电流 率 <mark>81 0 出合格的设计方 开始设计</mark>	设计结果 击设计结理 即以此项 家 家 保存:	处理(点 果列表头 目排序) 的EXCEL
序号 1 2 3 4 5 6 7 8 9	合格 Yes Yes Yes Yes Yes Yes Yes Yes	铁芯长度, cm 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	续组线径, mm 2.23 2.23 2.23 2.23 2.29 2.29 2.29 2.29	每槽匝数 22 22 22 22 21 21 21 21 21 21 21	每相电流A 16.796 16.796 16.796 18.796 18.582 18.58 18.58 18.58 18.58 18.58	輸入功率 W 16567.545 16567.553 16567.553 18166.484 18165.748 18165.748 18165.748 18165.748	輸出功率 15192 016 15192 018 15192 018 15192 018 16662 734 16662 549 16662 549 16662 549	转速,r/min 1461 1461 1461 1461 1461 1461 1461 146	转矩X.m 99.294 99.294 99.294 108.907 108.905 108.905 108.905
<									>

软件使用手册 - 32 -

4.12 绕组数据估算和调整

打开软件,点击工具按钮^一,即可弹出绕组数据估算页面。可以快速估算主付绕组数据,设定条件设计主绕组、付绕组,核算每槽槽满率。操作方法见软件的提示

本功能主要提供给**没有任何指标要求、只有定子尺寸**时的初步估算,不推荐使用。 本软件推荐采用<u>自动设计与优化计算</u>进行绕组设计。

软件使用手册 - 33 -

4.13 系统设置

打开软件,点击工具按钮²⁹,即可弹出系统设置页面。可以设置用户信息,密码,和显示颜色等,如下图所示。

┌─用户信息∛	5置			
公司名称	www	www.MotorCAD.net		
设计	您的名字	〕 审 核 】		
🔲 更改密	码(说明:如果设置	密码,则所有数据自动加密保存)		
旧密码	新密码	新密码再输一遍		
-显示颜色说	2置			
定子冲片	绕组 A村	目 绕组 B相		
转子冲片	转子端环 绕组 C相			
🗖 छुमेंमें	▶算单中输出材料曲	磯 确 定		

本页相关设置保存在程序目录下的[外转子三相异步电机设计.sys]文件中。如果 [外转子三相异步电机设计.sys]文件损坏或丢失,则所有原来的设置都会丢失,电机结 构图的颜色全部会变成黑色。

如果设置密码,则所有数据自动加密保存;打开文件时如果文件密码和系统密码一致,则直接打开,否则要求输入密码。

如果在【设计计算单中输出材料曲线】前面打勾,则在电磁设计计算单中会打出铁芯材料的磁化曲线和损耗曲线。(此选择只在文本格式计算单中有效)

输入数据点

清空公式

绘制曲线

4.14 磁化曲线拟合器

H(B)=

打开软件,点击工具按钮之,即可弹出磁化曲线拟合器页面。可以用来把材料的磁 化曲线拟合成规定格式的文件,以便软件计算时读取调用。

磁化曲线拟合器主要通过菜单命令操作。其中:

文件菜单可以打开、保存专用格式的磁化曲线文件(*.B_H),保存图片和打印曲线。 生成菜单提供了4种方法进行磁化曲线拟合,按照软件的提示操作即可。这里以「通 过分段公式生成曲线]为例,操作次序如下:

	肾 面变化为:
🗹 礒化曲线拟合器	
文件 生成 校验 设置	
「通过分段公式生成曲线————————————————————————————————————	
H (B)=	4000 Gs≤B≤ 9000 输入数据点
H(B)=	9000 Gs≤B≤ 12000
H (B)=	12000 Gs≤B≤ 15000
H (B)=	[15000]Gs≤B≤[18000] 绘制曲线
 2. 点击按钮输入数据点,出现如了 B(Gs) H(A/cm) 1.4 说明: 6500 2.37 输入曲线上的 9个数据点 9000 4.25 10500 6.02 注意事项 12000 8.8 itacheter正确填入数据, idacheter正确填入数据, 13500 14.5 成公式。 15000 28 要更改兰底色框中的文本,请 返回主界面更改。 16500 69.2 数据必须正确输入,否则软件 18000 138 	▶ 界面 确定 取消 按[确定]生 转[确定]生 转[取消], 打能出错。
文件 生成 校验 设置	
「通过分段公式生成曲线------------------------------------	
H(B)= 7.280001E-08*(B)^2-3.764002E-04*(B)+	1.7408 4000 Gs≤B≤ 9000 協入数据占

9000

Gs≤B≤ 12000

12000 Gs≤B≤ 15000

15000 Gs≤B≤ 18000

宁波高新区南牛电机技术有限公司宁波高新区江南一品广场 311 号楼 1108 室 联系电话:0574-87910951 手机:13071986828 公司网站: http://www.MotorCAD.net 技术服务 QQ 号码:106553993 电子邮件:liu@NotorCAD.net liuwqnet@163.com

2.244445E-07* (B) 2-3.196668E-03* (B)+ 14.84

H(B)= 1.733333E-06*(B)^2-.0404*(B)+ 244

H(B)= 6.133335E-06*(B)^2-.1657334*(B)+ 1134

软件使用手册 - 35 -

5 通过文件菜单**保存数据**,以后这种材料的磁化曲线就只要直接调用就可以了

校验菜单提供了 2 个曲线文件对比的功能,其中文件一可以是磁化曲线数据文件, 也可以是图片,文件二只能为磁化曲线数据文件。

设置菜单提供了设置曲线颜色、线条粗细、材料名称等功能,按照软件提示操作即可。

4.15 损耗曲线拟合器

打开软件,点击工具按钮之,即可弹出损耗曲线拟合器页面。可以用来把材料的损 耗曲线拟合成规定格式的文件,以便软件计算时读取调用。其操作方法和磁化曲线拟合 器是完全一样的。

软件使用手册 - 36 -

4.16 电机测试辅助工具

4.16.1 电阻测量折算

电机绕组内部的线已经接好,本功能可以从外电阻和接法求每相电阻数值。如下图

4.16.2 计算测试温升

🖊 电机测试辅助工具	电阻温升与等值电	路参数 📃 🖂 🔀
计算测试温升	电阻测量折算	等值电路参数
材料系数 Ka= ²³⁵ 初始室温 TO=20 终止室温 TI= ²⁰ 温升折算(当测试电源 测试电流A 额:	】初始电阻 №= タ止电阻 №= 实测温升Trs= 流和額定电流不一致时,才 定电流 In=	村料系数Ka取值: 铜235 铝225

一.电阻法测温升相关参数的换算

- a、如果所有空格都填满,则程序根据前面5项数字计算温升数值。
- b、如果有一个空格没填,则程序根据其他5项数字计算空格数值。
- c、如果有两个以上空格没填,则程序计算第一个空格的数值。

应用举例:

a、[温升计算]: 留温升为空格,其他都填满,按[确定]按钮。

b、[电阻折算]:如 30 度时测得电阻为 2 欧,求 20 度时的电阻,则: 留温升和 初始电阻为空格,其他都填满,材料系数 Ka 根据手册填写,初始室温 T0 填 20,终止室 温 T1 填 30,终止电阻 R1 填 2,按[确定]按钮。

操作提示:

a、按[TAB]键可以轮流在上面格子中输入数据。

b、材料系数 Ka 一般取值,铜:235;铝:225。也可以根据材料电阻变化反过

软件使用手册 - 37 -

来计算 Ka 值。

二-额定点温升折算

温升测试时偏离额定点,把温升折算到额定点。

4.16.3 求等值电路参数

🖊 电机测试辅助工具——电阻温升与等值电路参数 🛛 🗔 🔀				
计算测试温升	电阻测量折算	等值电路参数		
额定相电压V 220	毎相电阻(欧)2.6017	堵转相电压v 201.55		
额定相电流A 4.74	空载相电流A 2.23	堵转相电流A 27.07		
输出功率(W) 2200	空载输入功率145.7	堵转输入功率11760		
额定频率Hz 50	────────────────────────────────────	堵转频率Hz 50		
电机极数 (偶数4	风摩耗(W) 18.8	杂散损耗(W) 32.5		
测试方法见GB/T	1032-2005中10.7.2	44 / 哲		
电压、电流、电阻	LI按三相平均值输入	开		

点【计算】按钮后,结果如下:

- Int	三相异步电机设计	\mathbf{X}
	等值电路数据如下:(单位:欧姆)	X
	定子电阻R1=2.6021,定子电抗X1=2.1661 转子电阻R2=2.5741,转子电抗X2=3.1091 铁芯电阻Rm=1794.9111,励磁电抗Xm=96.99	981
	性能曲线已绘制,诸查看!	
	補定	

本软件采用精确等效电路进行性能计算,等效电路如下图所示:

软件使用手册 - 38 -

4.17 计算器

打开软件,点击工具按钮,即可调出 **Windows**系统计算器。如果 **Windows**系统中没有计算器或者已经损坏,则此命令无效。

4.18 记事本

打开软件,点击工具按钮,即可调出 Windows 系统记事本。如果 Windows 系统中没有记事本或者已经损坏,则此命令无效。

4.19 槽满率计算与线模设计

打开软件,点击工具按钮 📬,出现如下图界面。

本功能只计算定子单个槽形(大槽)的槽满率,要计算大小槽每一槽的槽满率,请在 [绕组数据估算]中使用[核算槽满率]功能。

线模设计结果仅供参考,如果不是两端圆弧中间直线的线模板,请保持周长不变,换算成其他形状的线模尺寸。

软件使用手册 - 39 -

4.20 线径换算

打开软件,点击工具按钮[▶],出现如下图界面。输入数字可以计算不同根数并绕时 需要的线径大小。

4.21 许用不平衡量计算

打开软件,点击工具按钮⁴⁴,出现如下图界面。输入数字可以计算转子的不平衡量。

😫 许用不平衡量计算 🛛 🔀
┌校正动平衡 —————
精度(mm/s) 🛅 👤
转子质量 (kg)
转子外径 (mm)
转速(r/min)
计算
转子允许不平衡量为
(g/端)

软件使用手册 - 40 -

4.22 双叠绕组匝数为奇数的自动排列

当绕组每线圈匝数显示为【大小包】时,点击【绕组布线设计】,即可自动排列大小 线包。如下图。

图中显示不正常,则说				45 / J.	
明无法构成此类绕组		相异梦电	机设计	\$X1年♥7.0	
○ 单层链式 ⊙ 双层叠绕	1士息#	#刘的院驻	1多蚁计	舁	
○ 单层交叉 ○ 双层同心	线细	地別粉捉			XA
○ 单层同心 ○ 其他绕组	、流細始端槽号	「末端槽号	- 匝数	□1电角度	
総閣陸距(槽) 15	1.	16.	19.	0.	
	2.	17.	20.	10.	
究组分布系数 ••••••	3.	18.	19.	20.	
谐波磁导∑S 0.00245	4.	19.	20.	30.	
节距す感系数 0.83333	5.	20.	19.	40.	
	6. 7	21.	20.	50.	
线圈长度永致 -	γ. ο	22.	19.	БU. 70	
绕组布线设计	0. 0	23. 24	20. 10 (10. 80	
	9. 10	24. 25	20	an.	
一材料设置————————————————————————————————————	11.	26.	19.	100.	
◎ 铜 ○ 铝 ○ 耐水线	12.	27.	20.	110.	
电阻率(Ω*10Km) 2.17	13.	28.	19.	120.	
	14.	29.	20.	130.	
	15.	30.	19.	140.	
导体密度(g/cm) 8.9	16.	31.	20.	150.	
槽锲厚度(mm) 2	17.	32.	19.	160.	
槽纸厚度(mm) .3	18.	33.	20.	170.	
	19.	34.	19.	180.	
後皮厚度又1年 	20.	30.	20. 10	190.	
=X1+=X1X	21.	1	20	200.	
	23.	2.	19.	220.	
○ 星形 (Y) ○ 三角形	24.	3.	20.	230.	
PAR (1) # 45/18 # 2	25.	4.	19.	240.	
寻线(1)开绕很数2	26.	5.	20.	250.	
导线(1)线径(mm).95	27.	6.	19.	260.	
导线 (2)并绕根数 0	28.	7.	20.	270.	
导线 (2)线径 (mm) 0	29.	- Х. О	19.	280.	
	30.	9. 10	20. 10	290. 300	
井联文路数	32	11.	20.	310	
毎槽匝数 Nm = 39. 71	33.	12.	19.	320.	
毎线圏匝数 大小包	34.	13.	20.	330.	
	35.	14.	19.	340.	
	36.	15.	20.	350.	

当绕组每线圈匝数显示为【不能用】时,请修改设计。

软件使用手册 - 41 -

4.23 空载特性分析

打开软件,点击工具按钮,可以进行空载特性分析。

空载特性分析有什么用? 我们在设计电机时经常要输入铁损系数、机械损耗、附加损耗,只有输入的这些数字符合实际,才能更准确的计算电机性能,特别是效率。而通过空载特性分析可以得到比较准确机械耗、铁耗、铜耗等数据。

数据分析完成后,可以通过文件菜单保存为三相异步电机空载曲线文件(*.Kong),以后可以通过文件菜单打开,也可以在 Windows 中用鼠标双击文件图标打开。

软件使用手册 - 42 -

4.24 电机结构图

打开软件,可以看到 7 个工具按钮 🔍 Q Q Q 🗣 Q 🖉 🖉 297 210 , 它们可以控制显示区电机结构图的绘制,如电机尺寸数据(包括定子冲片、转子冲片、转子端环、绕组分布方式)输入错误,通过图形可以很直观的看出来。

分别是:1 3 放大电机结构图 (1.25 倍)

2 억缩小电机结构图(0.8倍)

3 段窗口查看电机结构图细节

4 1:1 查看电机结构图(1 毫米=3.78 像素,直观性和显示器有关)

5 🕈 移动电机结构图

6 ① 重画电机结构图

7 / 297 210 自定义显示区尺寸

其中前面 6 个功能和其他 CAD 软件的操作基本一致,自定义显示区尺寸则可以在屏幕分辨率不够大的时候,自己输入显示尺寸(毫米 mm),然后拉动横竖两方向的滑动条查看图形。此时保存显示区为图片则可以得到一张大图,未显示部分也能保存下来。

软件使用手册 - 43 -

4.25 电磁设计计算单

4.25.1 文本格式计算单

所有数据输入完成后,点击按钮[文本计算单]即可打出电磁设计计算单,如下图所示。

國南中非特子古相同世	电机装计数件92.0 Exres.RoterCAD.net1I局款用E	E 6 🛛
文件 帮助		
E04 # 28		
BRINS .	当前夏示比例因子: 1.1704423	
O HERY O STREET	定了河戸6(1) 448,3050 第了福地6(9) 231,840* 伏割地(9) 3,3969 和県河地6(1) 2,8023 森都市村村(8) 00,1113 約用地(10) 883,1285	RETE
O WEEKO DIEKA O WEEKO DIIIKA HARAT MI	*1982世紀(0.) 1070, TWF 対抗学校(0.) 9*00, TW* 外地で第382世(0.) 8917, *43 PUTF+示意光(0.) 11184, 15 PUTF+砂絵中(0.) 9225, 259	·杜樹主統 取1月上十里申
 他語分支系数 自然相号工具 中臣王敏系数 ((慶に皮系数¹) 	田崎 再動10000,5384 18和平数1001 通帰再数1201.532 年間逝量数00897,4086 研修完成540,086 加減量17,117,125,002 加減量量(117,605,4480 完全情報(101)10,530 完全損益(101)4,530 20 25 通貨量(101)4,1451 特子環境(101)10,538 35 16 4 元(101,430,53) 特備者(101)4,233 計構業(101)2,301 特子環境(101)10,538 35 16 4 元(101)4,053 25 74歳(101)2,38516	- 特定点け屋 の 基本 の 支持 の 手座 の 支持 後申平v
建在40 计代计	十一、冠跡参敬与性能计算	都率 04
제태경품	胡纯压 380.Y 频率 90.Fz 板索4板 并服支路1路 T形注榜	1392
 ● 目11日 (1010) (1010) (2:11) ● 目11日 (1010) (2:11) ● 目11日 (1010) (2:11) 	(武士派(a) 5,217 単時中语(a) 2,217 第八市車(4,1955,601 第1日)率(4) 2,042 第1日把(Da) 2,215 程度(s/san) 0.35 第1年 N - 0.005 (1) 程度(s,2312)	01 0 4
 ● 信を説 (g/m) 0.9 ● 信を説 (g/m) 1.5 ● 信を説 (m) 1.5 ● 信息説 (m) 2.5 	特子异杂中流1141 553,6545 异染中液形体14/mg 21 12,6025 针子的环境流141 302,503 编码电视程度14/mg 21 12,6025 针子的环境流141 302,503 编码电视程度14/mg 21 7,2042	tr 第3879.79 第6入75年11
****	空子洞环(17) 252.0476 - 岩子信服(19) 4:1.0554 - 鉄樹和(19) 1.4044 机械用16(17) 3.0001 - 基軟搅和(19) 0.0001 - 局積和(17) 1287,1788	105-00.7
	*(残盛密(ga) 2181,208	-221-80
気候(11時後)m) 月 気候(2)手続時数1 気候(2)手続時数1 気候(2)低後(m) (11時間)の約5	旧線系数28-0.3446 13和系数28-1.0784 波線系数28-1.54 時代描述量 20012.3435 野砂白銀塔(A) A1.7757 動産規模(A) (2.11 動産規模(A) (2.1757,0009 空目標準(A) (4.148): 管子構成(A) 3.2538 酸丙酮(A) (4.1748) 特子情報(A) 3.2538 酸丙酮(A) (1.17,149 酸稀和(A) (1.4534,64) 特子情報(A) 3.2538 酸丙酮(A) (1.17,149 酸稀和(A) (1.4534,64) 特子情報(A) 3.2538 酸丙酮(A) (1.17,149 酸稀和(A) (1.4534,64)	800-100 5151-10 -1113-110
4470.21 So = 202 444.903.02 St		祝空计报 集
	输出因率(2).3% 共相相流力,595a,转速(1402.tr/min 型率(24.65% 因率因数(50.23) 超时间流(4.14值/0.23% 起货有担(20.05值/2.67%。 能大转担(22.25%)。	的重要的
	"告释温升:41.3 然后带:368.9 定子电图:1.09 厚泰电图:0.18 质环电图:6.128/m2	
		~ ~
十波高级区 用于 杜风放木	和語公司 成立第八年10.4PP 教系は選びarrangeese 人民社会教系galogeeges 走出能Lourozat 以外更新計算 2014-09-08 2014-0-6 23.58	BOJABAYA

在特定工作点框中选择合适的计算指标,输入指标值,点击按钮【计算性能】,就可 以计算这一工作点的各种性能,计算结果自动添加在电磁设计计算单的末尾。特定工作 点的性能计算,使变压、变频、变极、改变接法等等特殊状态的电机性能计算极为方便。

如果输入的数值超出了范围,则计算最大点的数值。比如一台电机最小电流为 1A, 最大电流为 5A,如果输入 0.5A,或者 100A,则计算结果显示为 5A 这个特定工作点的各项 性能指标。

在右下方有4个计算单的操作按钮,分别可以显示**(**或隐藏**)**计算单、保存计算单、 打印计算单、清空计算单。

软件使用手册 - 44 -

4.25.2 EXCEL 格式计算单

所有数据输入完成后,点击按钮[EXCEL 计算单]即可打出 EXCEL 格式的电磁设计计 算单,全部内容可以打印在一张 A4 纸上,如下所示。

	A	В	C	D	E	F	G		H		I	J	K	L
	南牛外转子三相异步电机设计软件V3_0电磁性能计算单													
1														
2	2 额定数据													
3	电机型号	周秋明	线电压 (V) 3		380	· 额定频率 (Hz)		50	50		电机极数		4	
4	输出功率	20	绝缘	等级	B级绝缘		计算温度 (°C) 。 7		75	5	冷却方式		闭式风冷	
5	→ 1000000000000000000000000000000000000								长度单位	:毫米。	m)			
6	1 .	he?	外转子	外径 D1	1	.03	2 C	0	1 b02 /	. 0	毛坯外	径 Di1		75
7		0.52	外转子内径 Dil			75			-		内定子内	內径 Di2	33	
8		1.1	外转子	漕数 Q1		30	-	- /	J L		内定子	曹数 Q2		24
9		0\$1		外转子子	F底槽							内定子	P底槽	
10			hs0	. 7	Ъ01	. 0001	131	- 1			hr0	.9	Ъ02	2
11			hs1	.8	bs1	5.4 🤇		N I	br1	<u> </u> °	hr 1	.6	br1	6.4
12		b01	hs2	5	bs2	6.4	~				hr2	12	br2	3.2
13	1 -				rs	0				1	hr3	0	br3	0
14	正规60° 绕组	单层链式	电机结	构数据	_			$-\Lambda$	br2	1 -	r1	0	br4	0
15	输入分布系数	0	气隙宽	度(mm)		25		. · · \		1	r2	0		
16	谐波磁导ΣS	0	铁芯叠	厚(mm)		48				<u> </u>	定子	绕组线模	<u> 周长2</u>	11mm
17	节距互感系数KB	0	径向道	<u> 通风道</u>		无	转子端环数	如据(长)	度单位:3	毫米nm)			_	
18	线圈跨距(槽)	5	定子通风道数			0	转子端环示意图		端环外径Dre		95			
19	定子绕组材料	铜漆包圆线	定子通风道宽		0						端环内]径Dri		76
20	定子电阻率	2.17	转子通	风道数		0					端环厚	度 lr		14
21	定子导体价格	70	转子通	风道宽		0		ur 📊	_			臗 hr		8
22	定子导体密度	8.9	叠压	系数	0	. 95					斜槽宽	C度 SK		1
23	槽锲厚度(mm)	1.5	铁芯	密度	í	.8		777	Tol		斜槽宽	度单位	个转	子齿距
24	槽纸厚度(mm)	0.2	铁芯	价格	5	5.5		/// E	i ăi		端环导	体材料	铸	转子
25		星形 (Y)接法	损耗曲	线文件	DR510	-50. B_H			1		端环导体	\$电阻率	4	. 34
26	导线1(根x线径)	1根0.31mm	损耗曲	线文件	DR510	-50.Pfe	r r				端环导	体价格		22
27	导线2(根x线径)	1根0.00mm	冷轧片冲	中裁修正	,	合		4	≓ ⊺		端环导	体密度	2	2.7
28	并联支路数	1	齿部铁	损系数	2	2.5					<u>外笼导</u>	体材料		
29	毎槽匝数	222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	损系数		2					外笼导位	\$电阻率		
30	20℃定子电阻Ω	48.144	空載机	誡耗(W)	0	. 85					外笼导	体价格		
31	槽满率	71.23%	一 杂散损	<u>課耗(W)</u>	(). 3					<u>外笼导</u>	<u>体密度</u>		
32	空載点性	能计算	额定点性能计算		堵转点性能计算				+貫					
33	毎相电流(A)	0.5204	毎相电	锍(A)	0.	5354	毎相电流	17. (A)	2.2	17	定子线	<u>車(Kg)</u>	0.	4102
34	输入功率())	58.6582	輸入功	5率(11)	82.	3779	輸入功率	≚(\)	1285	. 72	转子铝	<u>車(Kg)</u>	0.	3107
35	输出功率(W)	-0.3918	輸出功	<u>b率(W)</u>	20.	3309	輸出功率	≚(₩)	0.0	42	外笼铝	<u>車(Kg)</u>		
36	输出扭矩(Nm)	-0.0025	輸出扭	矩(Nm)	0.	1301	輸出扭矩	(Nm)	2.6	748	铁芯毛	重(Kg)	4.	0495
37	转速(r/min)	1499.835	转速6	r/min)	149	92.05		min)	0.1	15	<u> </u>	芯重 (Kg)	0.	9726
30	▶▶∖其本极。	(变成)	। কাজ	(9)	2/	68	「「「「「「「「」」」	(Y)		133	内宗子群	近車(K~)		8535 I

软件使用手册 - 45 -

4.26 电机性能曲线

乙人

4.26.1 基本操作

所有数据输入完成后,点击按钮【性能曲线】即可绘制电机的性能曲线,如下所示

同时将并弹出[性能曲线计算]对话框(如果没有输入数据,或者计算出错,在提示错误信息后也会弹出[性能曲线计算]对话框,但数据栏是空白的)如下图所示。

28 日11日日 文件 编辑	減计算 曲线数据 查看	计算参数						
选择额定参 O 电压 O 转矩	参数项 (横坐标)、 ● 电流 ● 转速	右键设置颜色	、埴写数字设5 輸入功率	雪坐标最大值—	数 () 100	·坐标值 ● 自动 ● 设置 1493.	绘图设置	 曲线生成方式设置 ● 计算数据点并绘制曲线 ● 通过输入数据生成曲线 ● 用Excel 数据生成曲线
前入功率¥	转速r/min	输出扭矩Nm	输出功率W	效率%	功率因数	估算温升K	热负荷AJ 🔨	
6.5142	1496.88	0.0474	7.4348	11.1778	0.1946	038.4	807.63	计算需要一些时间,点
4.4693	1493.88	0.0993	15.5419	20.8702	0.2182	038.3	805.44	击按钮后诸等待
2.384	1490.88	0.1506	23.5063	28.5326	0.2416	038.4	804.43	_计暂并绘制曲线
0.258	1487.88	0.2011	31.3298	34.7114	0.2646	038.5	804.6	F1 #271 \$2.0/3 E0 \$26
8.0911	1484.88	0.2509	39.0142	39.7734	0.2874	038.6	805.9	设置计算精度为0.04
44.3059	1464.88	0.5712	87.6324	60.7268	0.4402	037.1	743.24	
91.5523	1444.88	0.8654	130.9496	68.3623	0.5748	040.6	768.18	计复数据点并绘制曲线
37.6036	1424.88	1.1358	169.4853	71.3311	0.6833	047.1	836.18	
82.4005	1404.88	1.3836	203.566	72.0842	0.7648	056.1	943.03	
26.3377	1384.88	1.607	233.0621	71.4174	0.8181	068.1	1100.48	「输入转差率计算性能
68.8185	1364.88	1.8078	258.3997	70.0615	0.8529	082.3	1293.18	*+>= < < > 1400.0
09.3981	1344.88	1.9903	280.3203	68.4713	0.8784	097.7	1502.17	\$5)图 (r/min) [1430.3
67.2406	1314.88	2.2278	306.7586	65.6532	0.9008	123.6	1860.9	20男妹美女 6 06666666
21.1174	1284.88	2.43	326.9733	62.7447	0.9145	151.3	2245.58	□ 反直移差率 0.00000000
71.2925	1254.88	2.5993	341.5865	59.7919	0.9221	180.5	2654.79	计有种能
17 0070	1004 00	0 740	251 7000	E6 0006	0 0020	910-4	2072 OF	

软件使用手册 - 46 -

[性能曲线计算]对话框主要有两种内容:

1 曲线数据:和电机在测功机上测得的数据一致,有:电压、电流、输入功率、 转矩(扭矩)、转速、输出功率、效率、功率因素。

曲线数据显示在文本框中,用户可以编辑修改,然后重新绘制曲线。

曲线数据可以保存为电机负载曲线文件(*.TpCht),以后可 以通过文件菜单打开,也可以在 Windows 中用鼠标双击文件图标 打开。曲线数据可以导出到 EXCEL 表格中。

曲线数据可以通过设计电机时计算参数得到,也可以手工输入、或者从 **EXCEL** 中导入。

2 计算参数:包含了电机每一个工作点的主要性能计算参数,有序号、电流、 输入功率、转矩(扭矩)、转速、输出功率、效率、功率因素、主 线电密、付线电密、导条电密、端环电密、热负荷、电容端电压、 磁场圆度。

> 计算参数显示在数据列表中,可以用鼠标拖动横向或纵向的 滚动条,查看所有项目的数据。

> 计算参数可以通过文件菜单保存为文本文件,或者导出到 EXCEL 表格中。

【性能曲线计算】对话框由**菜单栏、曲线外观设置区、数据显示区、曲线生成方式设** 置区构成,分别用来实现以下功能:

菜单栏:文件à打开曲线数据

à保存曲线数据

à 把曲线数据导出到 EXCEL

à保存曲线图片:把绘制在主界面的曲线保存为图片

à把计算参数保存为文本

à把计算参数导出到 EXCEL

à关闭:关闭【性能曲线计算】对话框

查看曲线数据: 使显示曲线数据的文本框显示出来

查看计算参数: 使显示计算参数的数据列表显示出来

曲线外观设置区:

绘图笔宽设置:设置曲线的粗细,数字可以输入 1-10

颜色**/坐标值设置à自动**:按默认的颜色和坐标最大值绘制曲线

à手动:按用户要求的颜色和坐标最大值绘制曲线。如果

几个电机曲线的坐标最大值一样,而颜色或粗细不同,则可以 保存为同样大小的图片进行叠加,性能对比非常直观

额定参数项和横坐标选择:可以选择任何指标为横坐标,曲线自动变换
 额定值设置:曲线图中标出的额定工作点。此数值必须按实际设置,否则
 造成曲线图中标示的起动转矩倍数等性能与实际不符

数据显示区:显示曲线数据或者计算参数,可以通过菜单控制

曲线生成方式设置区:通过设计电机时计算参数得到数据,手工输入数据、或者从 **EXCEL** 中导入数据,操作注意事项见软件的提示信息。

软件使用手册 - 47 -

4.26.2 普通电机性能曲线和性能计算

在曲线生成方式设置区选择[普通电机设计数据曲线],点击下面的按钮[计算数据点 并绘制曲线],即可得到性能曲线;输入转差率后点击按钮[计算性能],即可计算此转差 率下的所有性能。

4.26.3 变频电机性能曲线和性能计算

在【设计向导】界面【变频特性核算】功能中:

输入某一频率后,点击按钮[计算额定点],即可计算此频率下的额定性能。 输入某一频率后,点击按钮[计算曲线点],即可计算此频率下的性能曲线。如下图

4.26.4 输入数据绘制曲线

在曲线生成方式设置区选择**[**通过输入数据生成曲线**]**,或**[**用 **EXCEL** 数据生成曲线**]** 即可按数据绘制曲线。

软件使用手册 - 48 -

鏉侔儢周亭跚

- 49 -

第五章 设计参考

5.1 使设计计算更准确

1. 如何使计算更准确?

在材料、结构、电磁负荷水平等参数基本不变时,如果有一个规格的电机计算 参数和实测值比较接近,那么请保持所有系数不要改变,计算其他规格(比如叠高 改变、绕组改变、电压改变而成的新规格)也将相当准确。

如果有其中某一个因素改变,则只改动对应的系数。如铁芯材料改变,则只需 要改变磁化曲线和损耗曲线;等等。

2. 如何更准确的计算定子绕组电阻?

在某些特殊专用的电机中,本软件定子绕组电阻可能计算不准,这时可以采用 改变输入绕组电阻率和密度的办法进行修正,使定子绕组电阻和实际测试数值一致。

3. 如何输入更准确的转子导体的电阻率、更准确的计算转子电阻?

先按软件默认数值进行计算,看计算的转速是否和实测值一致,如果计算的转 速高而实测值低,则说明软件输入的转子导体的电阻率小了,需要适当加大;反之 则需要适当减小。调整输入转子导体的电阻率后再次计算,直到转速和实测值基本 一致。

在不同的工作点,转子归算电阻是变化的,但一般只要一个计算点是准确的, 则其他点的计算也是准确的。

5.2 设计铝线电机

1.定转子冲片、端环、绕组方式等不变,如何操作软件,使铝线电机达到铜线电机的性能?

首先应输入铜线电机的相关数据,进行性能计算,记下软件计算的数值,作为铝 线电机的指标限值和参考数值**(**如各项规定指标、绕组电阻、槽满率等等**)**。

其次应在绕组材料选项[铜]、[铝]、[耐水线]中选择[铝],然后在工具拦中按[自 动设计]按钮,在[自动设计方案]界面中设置相关指标限值,无要求的指标,请保持软 件默认值不变,然后按[自动设计],设计完成后在列表中选择其中合格的方案即可。

2. 按照前面方法操作无法得到合格的方案, 怎么办?

A如果效率可以适当降低要求,一般可以得到合格的方案。

B 如果效率要求严格,可能需要采用各种提高效率的办法,以弥补铝比铜电阻率 大带来的损耗。

C也可以考虑设计铝线电机专用的定转子片和电机方案。

软件使用手册 - 50 -

5.3 制造工艺对性能的影响

影响电机性能的因素很多,有些是目前版本软件没有考虑的,必须由设计人员来把握。比如:同样的定子片尺寸,采用扣片、铆钉、氩弧焊、高速冲自动叠扣,性能可能就有所相差;同样的定子片尺寸,安装在钢板机筒、铸铁机筒机筒、铝壳之内,性能也会有所不同;其他如铁损系数,工艺变化等等,也是如此,需要设计人员来把握。

部件制造工艺和材料性能波动对电机性能的影响如下表

序	制造工艺 材料树龄的冲动	对电机性能的影响					
号	前垣工乙、肉种性能的奴幼	电磁参量	性能指标				
1	转子铁心外径尺寸偏小或定子铁心内径 尺寸偏大,使气隙偏大	KIT					
2	定子、转子铁心间轴向偏移,引起铁心 有效长度减小	空载电流增大	功率因数降低				
3	电工钢片导磁性能偏低						
4	定子、转子铁心压装质量差,净铁心长 度不足	空载电流和铁耗增大	功率因数和效率降低				
5	转子斜槽度偏大	转子槽漏抗增大, 使	功率因数、最大转矩				
6	转子铁心叠装不整齐,槽口尺寸减小	电抗电流增大	和起动转矩降低				
7	定子冲片毛刺过大,使铁心涡流损耗增 大						
8	定子冲片表面绝缘质量差或因压装压力 过大,使绝缘层受损,引起涡流损耗增 大	铁耗增大	效率降低,温升增高				
9	电工钢片单位损耗偏高						
10	绕线时拉力过大,使导线直径变细	定子绕组电阻增大, 使转子铝耗增大	效率降低, 温升增高				
11	铸铝转子铝笼导体有未浇满、气孔和缩 孔等缺陷	转子电阻增大,使转 子铝耗增大	效率降低,转差率增 高				
12	铝的纯度较差,导电率低		1. 4				
13	由于零部件的不同轴度、装配不良和轴承工作游隙过小,引起转子转动不灵活	机械损耗大	效率降低				
14	润滑脂针入度选择不当或填装量过多 (特别是2极电机)						
15	转子外径偏大, 使气隙减小	杂散损耗增大和谐流 漏抗增大	效率可能降低,温升 可能增高,最大转矩 和起动降低				
16	转子铁心的槽部和导条间的绝缘电阻小 或片间渗铝,使横向电流增大	杂散损耗增大	温升增高,效率降低				
17	自扇冷封闭式电机的定子铁心与机座接 触不良,影响电机散热效果		温升增高				

歙侔儢周孚厵

- 51 -

5.4 关于磁密和设计方法

1.磁密:不是一个数值,而是一个范围

在大电机的设计中,在很多理论分析的书籍上,因为负载变化造成的磁密变化, 通常都是被忽略的,因为大型异步电机绕组电阻较小,工作转速和同步转速又非常接 近,这种忽略并不会带来明显的误差,这样做可以简化理论分析。

某些有限元分析软件也这样做,异步电机的磁密统统按照同步转速来计算,但在 实际工作状况中,根本不会出现这个转速,这样的计算是真正的"纯理论"。这是某 些有限元软件比较搞笑的一件事,一方面为了精确地计算而剖分为很多细小的单元, 另一方面却忽略了最主要的因素。

因为在小电机中,绕组电阻通常比较大,因此绕线工艺造成的端部长度的不同, 和温度的变化,都会一定程度地影响压降,而压降会影响磁密。影响小电机性能的主 要是工艺,小电机的设计中,最重要的是设计前要了解工艺状况,使输入的系数数值 和实际状况一致。如果输入数值和实际完全不一样,则无论采用什么方法、无论买什 么软件,无论请哪个神仙来算,都不可能准确的。

另外小电机由于工作转速和同步转速相差较大,甚至可能处于堵转状态,这种负载的变化,可以造成压降和漏磁两方面的变化,实际磁密数值会明显的变化。因此,小电机中的磁密通常不是一个数值,而是一个范围。这就造成了实际工作中很多专用电机的空载电流比负载电流还大,空载温升比负载温升还高得多。

2.设计方法: 工艺决定设计, 书上的经验数值(如磁密等参数)并不值得过分关注

在传统的设计方法中,工程师们采用取磁密经验值的方法设计绕组匝数,但我们 有了软件之后,这种设计方法毫无意义。因为软件可以直接把性能参数计算出来,直 接关注最终性能就好了。如果磁密和漏抗等参数不合适,一定会反映到最终性能上来 的;如果最终性能很好,磁密等参数再怎么超出书本上的推荐取值也无妨,书本上的 推荐值 50 年来没有什么变化,但现在我们的材料和工艺已经有了很大的不同,很多 专用电机超出书本上的推荐数值的范围是很正常也很自然的事情。

所以,我们实际设计产品时,主要考虑工艺问题,由工艺能力决定产品设计。举例:比如我们知道定子槽口小一点电机性能更好,但小到什么程度,具体取什么数值,只能综合我们自己的冲片模具、冲片材料、嵌线能力等因素进行考虑,按书本上的所谓经验公式进行一系列的计算,基本没有什么意义。再举例:气隙宽度一般应该大于转子外圆跳动的6倍,如果机械加工精度很高,则可以取小一点的数值。总之,这些参数的实际合理取值,因工厂的加工能力不同而变化,跟书上的经验公式、推荐数值是多少没什么关系,产品设计者搞清楚自己工厂的特点才是最重要的事。

软件使用手册 - 52 -

特别声明

本软件及其文档资料可能存在某些错误,这些错误可能会给您造成损失,对此,本公司只承诺在下一升级版本中改进这些错误,对于您的损失本公司不负任何责任。

如果您在电机设计实践中遇到困难,可以与我公司联系,我公司非常乐意为您服务。我的实际办公地址:浙江宁波高新区江南一品广场 311 号楼 1108 室,这是我新买的办公室。从宁波火车站南广场坐 514、518 等路公交车到【杨木碶路江南路口】 下车即可,在宁波高新区新华书店斜对面、交通银行楼上。

